## SYNTHESIS OF POTENTIAL VITAMIN D ANTAGONISTS

B. L. Onisko, H. K. Schnoes, and H. F. DeLuca

Department of Biochemistry, College of Agricultural and Life Sciences,

University of Wisconsin-Madison, Madison, Wisconsin 53706

(Received in USA 30 November 1976; received in UK for publication 16 February 1977)
The biological activity of vitamin D<sub>3</sub> results from its metabolic conversion to 1α,25-dihydroxyvitamin D<sub>3</sub> (1α,25-(OH)<sub>2</sub>D<sub>3</sub>) in a two-step process involving hydroxylation of vitamin D<sub>3</sub> by the liver to 25-hydroxyvitamin D<sub>3</sub> (25-OH-D<sub>3</sub>), and subsequent hydroxylation to 1α,25-(OH)<sub>2</sub>D<sub>3</sub> by the kidney (1). Vitamin D analogs with altered side-chains that cannot be directly 25-hydroxylated by a mixed-function oxidase, but closely resemble the natural substrate, are thus potential inhibitors of the liver enzyme. We wish to report the synthesis of four new vitamin D analogs (compounds 1-4) which fulfill this structural requirement.

$$\frac{1}{2} \xrightarrow{R} F$$

$$\frac{3}{R} \xrightarrow{R}$$

$$\frac{4}{R} \xrightarrow{R}$$

$$\frac{4}{R} \xrightarrow{R}$$

$$\frac{4}{R} \xrightarrow{R}$$

For the synthesis of 25-azavitamin D<sub>2</sub> ( $\underline{1}$ ) tosylate  $\underline{5}$  served as starting material, in turn obtained in five steps and 61% yield from stigmasterol by the procedure of Partridge et al. (2). Compound  $\underline{5}$  (mp 144-145°), treated with LiBr in refluxing acetonitrile (6.5 hr) gave, in 85% yield, the crystalline bromo derivative  $\underline{6}$  (mp 63.5-65°). Condensation of  $\underline{6}$  with the enclate of dimethyl acetamide (generated by treatment with lithium diisopropyl amide at -78°) yielded the cholanic acid dimethylamide derivative 7 (M 415.3430) in 70% yield (3). Amide 7 heated in acetic acid (70°, 18 hr) gave cholenic acid dimethylamide 8 (93%, mp 192-193.5°). Treatment of  $\underline{8}$  with 1,3-dibromo-5,5-dimethylhydantoin in refluxing CC1 $_4$  (20 min, N $_2$  atmosphere) and subsequent dehydrohalogenation with collidine (in xylene, 140°, 1.5 hr,  $N_2$ ) gave a mixture of 4,6 and 5,7-dienes from which the desired 5,7-diene was isolated by Diels-Alder adduct formation with 4-phenyl-1,2,4-triazolin-3,5-dione (4) to give product  $9 \pmod{122-125}$  in ca. 20% overall yield. Reduction of adduct  $\underline{9}$  with LiAlH<sub> $\underline{4}$ </sub> in boiling THF (7 hr) gave 25-aza-7-dehydrocholesterol ( $\underline{10}$ ; 84%; mp 141.5-143°). Irradiation of  $\underline{10}$  in ether (6 min, 0°, N<sub>2</sub>) followed by purification of the pre-vitamin D derivative and thermal isomerization of the latter at 70° provided the desired analog, 25-azavitamin D $_3$  [1; 23% yield; uv (EtOH)  $\lambda_{max}$  265 nm; nmr (270 MHz, CDC1 $_3$ )  $\delta$ 6.24 and 6.03 (AB, J = 11 Hz, 2H, C-6,7), 5.05 (m, 1H, C-19), 4.82 (m, 1H, C-19), 3.95 (t of t, J = 7.4 and 3.7 Hz, 1H, C-3), 2.31 (s, 3H, C-26,27), .93 (d, J = 6 Hz, 3H, C-21), .54 (s, 3H, C-18); m/e (rel. intensity) 385 ( $M^+$ , 15), 370 (3), 352 (1), 84 (10), 71 (4), 58 (100);  $M^+$ , m/e calcd. for  $C_{26}H_{43}N0$ : 385.3345, found: 385.3340; purity > 99% by t1c and g1c].

The other analogs, 25-fluorovitamin  $D_3$  ( $\underline{2}$ ), 24-dehydrovitamin  $D_3$  ( $\underline{3}$ ) and 25-dehydrovitamin  $D_3$  (4) are derived directly from monoacetate 11, itself obtained by selective acetylation of 25-OH-D<sub>3</sub>. For example, reaction of  $\underline{11}$  with diethylaminosulfur trifluoride (5) (15 min, -78° in  $\mathrm{CH_2Cl_2}$ ) gave tertiary fluoride 12 [yield 59%;  $\mathrm{M}^+$  444.3385] which after hydrolysis with potassium hydroxide/methanol provided 25-fluorovitamin D<sub>3</sub> [2; 72% yield; uv (EtOH)  $\lambda_{max}$  265 nm; nmr (270 MHz, CDC1<sub>3</sub>)  $\delta$  6.24 and 6.03 (AB, J = 11 Hz, 2H, C-6,7), 5.05 (m, 1H, C-19), 4.82 (m, 1H, C-19), 3.95 (t of t, J = 7.1 and 3.6 Hz, 1H, C-3), 1.34 (d,  $J_{H,F} = 21$  Hz, 6H, C-26,27), .93 (d, J = 3.956 Hz, 3H, C-21), .54 (s, 3H, C-18); m/e (rel. intensity) 402 (M<sup>+</sup>, 13), 369 (4), 271 (4), 253 (5), 136 (100), 118 (88);  $M^+$ , m/e calcd. for  $C_{27}H_{43}OF$ :402.3298, found: 402.3284; purity > 99% by tlc and glc]. Alternatively, treatment of 11 with phosphorus oxychloride/pyridine (1 hr, 25°) gave a 2:1 mixture of 13 to 14 which after chromatography (silver nitrate/silica gel) afforded intermediate  $\underline{13}$  [37% yield] and intermediate  $\underline{14}$  [11% yield]. Hydrolysis with potassium hydroxide transformed  $\underline{13}$  to 24-dehydrovitamin D<sub>3</sub> [ $\underline{3}$ ; 79% yield; uv (EtOH)  $\lambda_{\text{max}}$  265 nm; nmr (270 MHz, CDCl<sub>3</sub>)  $\delta$  6.24 and 6.03 (AB, J = 11 Hz, 2H, C-6,7), 5.09 (t, J = 7 Hz, 1H, C-24), 5.05 (m, 1H, C-19), 4.82 (m, 1H, C-19), 3.95 (t of t, J = 7.4 and 3.7 Hz, 1H, C-3), 1.68 (s, 3H, C-26), 1.60 (s, 3H, C-27), .94 (d, J = 6 Hz, 3H, C-21), .54 (s, 3H, C-18); m/e (rel. intensity) 382 ( $M^{+}$ , 24), 349 (8), 253 (6), 136 (100), 118 (78), 69 (41), 55 (30);  $M^{+}$ , m/e calcd. for  $C_{27}H_{L2}O:382.3236$ , found: 382.3229; purity > 99% by tlc and glc]. Acetate 14 was similarly hydrolyzed to 25-dehydrovitamin D3 [4; uv (EtOH)  $\lambda_{\text{max}}$  265 nm; nmr (CDC1<sub>3</sub>) 6.24 and 6.04 (AB, J = 12 Hz, 2H, C-6,7), 5.05 (m, 1H, C-19), 4.82 (m, 1H, C-19), 4.69 (s, 1H, C-26), 4.66 (s, 1H, C-26), 3.95 (m, 1H, C-3), 1.72 (s, 3H, C-27), .93 (d, J = 6 Hz, C-21), .54 (s, 3H, C-18); m/e (rel. intensity) 382 ( $M^{+}$ , 26), 349 (5), 253 (5), 136 (100), 118 (78), 69 (18), 55 (30); M<sup>+</sup>, m/e calcd. for C<sub>27</sub>H<sub>42</sub>0:382.3236, found: 382.3233; purity > 99% by tlc and glc].

## References

- 1. H. F. DeLuca, and H. K. Schnoes, Ann. Rev. Biochem. 45, 929 (1976).
- 2. J. J. Partridge, S. Faber, and M. R. Uskokovic, Helv. Chim. Acta 57, 764 (1974).
- 3. D. Seebach, and H. F. Leitz, Angew. Chem. Internat. Edit. 10, 501 (1971).
- 4. D. H. R. Barton, T. Shioiri, and D. A. Widdowson, J. Chem. Soc. (C), 1968 (1971).
- 5. W. J. Middleton, J. Org. Chem. 40, 574 (1975).
- 6. Support through grants AM-14881 and GM00236BCH from the NIH is acknowledged.